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Although deep learning has revolutionized protein structure prediction, almost all experimentally characterized
de novo protein designs have been generated using physically based approaches such as Rosetta. Here, we
describe a deep learning–based protein sequence design method, ProteinMPNN, that has outstanding
performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a sequence
recovery of 52.4% compared with 32.9% for Rosetta. The amino acid sequence at different positions can be
coupled between single or multiple chains, enabling application to a wide range of current protein design
challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using x-ray crystallography, cryo–
electronmicroscopy, and functional studies by rescuing previously failed designs, whichweremade using Rosetta or
AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target-binding proteins.

T
he protein sequence design problem is to
find, given a protein backbone structure
of interest, an amino acid sequence that
will fold to this structure. Physically based
approaches such as Rosetta treat sequence

design as an energy optimization problem,
searching for the combination of amino acid
identities and conformations that has the
lowest energy for a given input structure. Re-
cently, deep-learning approaches have shown
promise in rapidly generating candidate amino
acid sequences given monomeric protein back-
bones without the need for compute-intensive
explicit consideration of side chain rotameric
states (1–7). However, the methods described
thus far do not apply to the full range of cur-
rent protein design challenges and have not
been extensively validated experimentally.
We sought to develop a deep learning–based

protein sequence designmethod that is broad-
ly applicable to the design of monomers, cyclic
oligomers, protein nanoparticles, and protein-
protein interfaces. We began from a previous-
ly described message-passing neural network
(MPNN)with three encoder and three decoder
layers and 128 hidden dimensions that pre-
dicts protein sequences in an autoregressive
manner from the N to C terminus using pro-
tein backbone features—distances between
Ca-Ca atoms, relative Ca-Ca-Ca frame orien-
tations and rotations, and backbone dihedral
angles—as input (1). We first sought to im-
prove performance of themodel on recovering

the amino acid sequences of native single-
chain proteins given their backbone structures.
A set of 19,700 high-resolution single-chain
structures from the Protein Data Bank (PDB)
were split into train, validation, and test sets
(80/10/10) based on the CATH (8) protein clas-
sification database (see methods). We found
that including distances between N, Ca, C, O,
and a virtual Cb placed based on the other
backbone atoms as additional input features
resulted in a sequence recovery increase from
41.2% (baselinemodel) to 49.0% (experiment 1)
(see Table 1); interatomic distances evidently
provide a better inductive bias to capture inter-
actions between residues than dihedral angles
orN-Ca-C frameorientations.We also observed
performance improvements with edge updates
in addition to the node updates in the back-
bone encoder neural network (experiment 2).
Combining the additional input features and

edge updates leads to a sequence recovery of
50.5% (experiment 3). To determine the range
over which backbone geometry influences
amino acid identity, we tested 16, 24, 32, 48,
and 64 nearest–Ca neighbor neural networks
(fig. S1A) and found that performance was sat-
urated at 32 to 48 neighbors. Unlike the protein
structure prediction problem, locally connected
graph neural networks can accurately model
the structure-to-sequence mapping problem
because the optimality of an amino acid at a
particular position is largely determined by
the immediate protein environment.
To enable application to a broad range of

single- and multichain design problems, we
replaced the fixed N to C terminal decoding
order with an order-agnostic autoregressive
model inwhich the decoding order is randomly
sampled from the set of all possible permuta-
tions (9). This also resulted in a modest im-
provement in sequence recovery (Table 1;
experiment 4). Order-agnostic decoding en-
ables design in cases where, for example, the
middle of the protein sequence is fixed and
the rest needs to be designed, as in protein
binder design where the target sequence is
known; decoding skips the fixed regions but
includes them in the sequence context for the
remaining positions (Fig. 1B). For multichain
design problems (see discussion later in the
text), to make the model equivariant to the
order of the protein chains, we kept the per
chain relative positional encoding capped at
±32 residues (10) and added a binary feature
that indicates whether the interacting pair of
residues are from the same or different chains.
We used the flexible decoding order to fix

residue identities in sets of corresponding po-
sitions (the residues at these positions are
decoded at the same time). For example, for
a homodimer backbone with two chains A
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Table 1. Improvements in model performance on native protein sequence recovery. Test accuracy
(percentage of correct amino acids recovered) and test perplexity (exponentiated categorical cross-
entropy loss per residue) for models trained on the native backbone coordinates (value to the left of
the slash) and models trained with Gaussian noise (SD = 0.02 Å) added to the backbone coordinates
(value to the right of the slash). Noise was only added during training, and all test evaluations are with no
added noise. The final column shows sequence recovery on 5000 AlphaFold protein backbone models,
with average predicted IDDT > 80.0, randomly chosen from UniRef50 sequences.

Noise level
when training:
0.00 Å/0.02 Å

Modification
Number of
parameters
in millions

PDB test
accuracy (%)

PDB test
perplexity

AlphaFold
model

accuracy (%)

Baseline model None 1.381 41.2/40.1 6.51/6.77 41.4/41.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Experiment 1 Add N, Ca, C, Cb,
O distances

1.430 49.0/46.1 5.03/5.54 45.7/47.4

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Experiment 2 Update encoder edges 1.629 43.1/42.0 6.12/6.37 43.3/43.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Experiment 3 Combine 1 and 2 1.678 50.5/47.3 4.82/5.36 46.3/47.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Experiment 4 Experiment 3 with
random decoding

1.678 50.8/47.9 4.74/5.25 46.9/48.5

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .
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and B with sequence A1, A2,… and B1, B2,…,
the amino acids for chains A and B have to
be the same for corresponding indices; we
implement this by predicting unnormalized
probabilities for A1 and B1 first and then com-
bining these two predictions to construct a
normalized probability distribution from
which a joint amino acid is sampled (Fig. 1C).
For pseudosymmetric sequence design, res-
idues within or between chains can be sim-
ilarly constrained; for example, for repeat
protein design, the sequence in each repeat
unit can be kept fixed. Multistate design of
single sequences that encodes two or more
desired states can be achieved by predicting
unnormalized probabilities for each state
and then averaging; more generally, a linear
combination of predicted unnormalized prob-
abilities with some positive and negative co-
efficients canbeused toupweight ordownweight
specific backbone states to achieve explicit
positive or negative sequence design. The ar-
chitecture of this multichain and symmetry-
aware (positionally coupled) model, which we
call ProteinMPNN, is outlined schematically
in Fig. 1A.We trained ProteinMPNNonprotein

assemblies in the PDB (as of 2 August 2021)
determined by x-ray crystallography or cryo–
electronmicroscopy (cryo-EM) to better than
3.5-Å resolution and with fewer than 10,000
residues (see methods).
For a test set of 402 monomer backbones,

we redesigned sequences using Rosetta fixed
backbone combinatorial sequence design [one
round of the PackRotamersMover (11, 12) with
default options and the beta_nov16 score func-
tion] and ProteinMPNN. Although requiring
only a small fraction of the compute time
(1.2 versus 258.8 s on a single CPU for 100 res-
idues), ProteinMPNN had a much higher over-
all native sequence recovery (52.4 versus 32.9%),
with improvements across the full range of
residue burial from protein core to surface
(Fig. 2A). Differences between designed and
native amino acid biases for the core, bound-
ary, and surface regions for the two methods
are shown in fig. S2.
We further evaluated ProteinMPNN on a

test set of 690monomers, 732 homomers (with
fewer than 2000 residues), and 98 heteromers.
Themedian sequence recoveries over all residues
were 52% for monomers, 55% for homomers,

and 51% for heteromers, and the median se-
quence recoveries over interface residues were
53% for homomers and 51% for heteromers (Fig.
2B). In all three cases, sequence recovery corre-
lated closely with residue burial, ranging from
90 to 95% in the deep core to 35%on the surface
(fig. S1B); the amount of local geometric context
determines how well residues can be recovered
at specific positions.

Training with backbone noise improves model
performance for protein design

Although protein sequence design approaches
have often focused on maximizing sequence
recovery for protein backbones from high-
resolution crystal structures, this is not necessar-
ily optimal for actual proteindesignapplications.
We found that trainingmodels on backbones
to which Gaussian noise (SD = 0.02 Å) had
been added improved sequence recovery on
confident protein structure models generated
by AlphaFold [average predicted local-distance
difference test (IDDT) > 80.0] from UniRef50,
whereas the sequence recovery on unperturbed
PDB structures significantly decreased (Table
1); crystallographic refinement may impart
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Fig. 1. ProteinMPNN architecture. (A) Distances between N, Ca, C, O, and
virtual Cb are encoded and processed using a message-passing neural network
(Encoder) to obtain graph node and edge features. The encoded features,
together with a partial sequence, are used to generate amino acids iteratively
in a random decoding order. (B) A fixed left-to-right decoding cannot use
sequence context (green) for preceding positions (yellow), whereas a model
trained with random decoding orders can be used with an arbitrary decoding

order during the inference. The decoding order can be chosen such that
the fixed context is decoded first. (C) Residue positions within and between
chains can be tied together, enabling symmetric, repeat protein, and
multistate design. In this example, a homotrimer is designed with the coupling
of positions in different chains. Predicted unnormalized probabilities for
tied positions are averaged to get a single probability distribution from which
amino acids are sampled.
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somememory of amino acid identity in the
backbone coordinates, which is captured by
models trained on crystal structure backbones
and reduced by the addition of noise. Robust-
ness to small displacements in atomic coor-
dinates is a desirable feature in real-world
applications for which the protein backbone
geometry is not known at atomic resolution.
AlphaFold (10) and RoseTTAFold (13) make

very good structure predictions for native pro-
teins, given multiple sequence alignments that
can contain substantial coevolutionary and
other information that reflects aspects of the
three-dimensional (3D) structure, but gen-
erally produce less-accurate structure models
when provided with only a single sequence.
We reasoned that ProteinMPNN might gen-
erate sequences for native backbones that
more strongly encode the structures than the
original native sequences, because evolution,
in most cases, does not optimize for stability.
Indeed, we found that ProteinMPNN se-
quences generated for native backbones were
predicted to fold to these structures much
more confidently and accurately by AlphaFold

than the original native sequences (Fig. 2E).
ProteinMPNN also strengthened the sequence-
to-structure mapping for designed backbones:
Over a set of de novo–designed ligand binding
pocket–containing scaffolds generated using
Rosetta, only 2.7% of the original designed
sequences were predicted to fold to the tar-
get structures, but after ProteinMPNN rede-
sign, 54.1% were confidently predicted to fold
to the target structures (Fig. 2F). This should
substantially increase the utility of these scaf-
folds for the design of small-molecule bind-
ing and enzymatic functions.
We further found that the strength of the

single sequence–to-structure mapping, as as-
sessed by AlphaFold, was higher for models
trained with additional backbone noise. As
noted above, the average sequence recovery
for crystallographically refined backbones
decreases with increasing amounts of noise
added during training (Fig. 2C) because these
models blur out local details of the backbone
geometry. However, sequences generated by
noised ProteinMPNNmodels are more robust-
ly decoded into 3D coordinates by AlphaFold,

likely because noised models focus more on
overall topological features as encoded by,
for example, the overall polar-nonpolar se-
quence pattern than local structural details.
For example, a model trained with 0.3-Å noise
generated two to three times more sequences
with AlphaFold predictions within lDDT-Ca
(14) of 95.0 and 90.0 of the true structures than
unnoised or slightly noised models (Fig. 2C;
training with higher levels of noise increases
success rates for less-stringent lDDT cutoffs).
In protein design calculations, the models
trained with larger amounts of noise have
the advantage of generating sequences that
more strongly map to the target structures by
prediction methods (this increases the fre-
quency atwhich designs pass prediction-based
filters and may, correspondingly, also increase
the frequency of folding to the desired target
structure).
Because the sequence determinants of pro-

tein expression, solubility, and function are
not perfectly understood, in most protein de-
sign applications, it is desirable to test multiple
designed sequences experimentally. We found
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Fig. 2. In silico evaluation of ProteinMPNN.
(A) ProteinMPNN has higher native sequence
recovery than Rosetta. The average Cb distance
of the eight closest neighbors (x axis) reports
on burial, with the most-buried positions on
the left and the more-exposed positions on the
right; ProteinMPNN outperforms Rosetta at
all levels of burial. Average sequence recovery
for ProteinMPNN was 52.4% compared with
32.9% for Rosetta. (B) ProteinMPNN has high
sequence recovery for monomers and for
both homo-oligomer and hetero-oligomer inter-
faces (Cb-Cb < 8 Å); violin plots are for 690
monomers, 732 homomers, and 98 heteromers.
(C) Sequence recovery (black) and relative
AlphaFold success rates (blue) as a function of
training noise level. For higher accuracy pre-
dictions (circles), smaller amounts of noise are
optimal (1.0 corresponds to a 1.8% success
rate), whereas to maximize prediction success
at a lower accuracy cutoff (squares), models
trained with more noise are better (1.0 corre-
sponds to a 6.7% success rate). (D) Sequence
recovery and diversity as a function of sampling
temperature. (E) Redesign of native protein
backbones with ProteinMPNN considerably
increases AphaFold prediction accuracy com-
pared with the original native sequence using
no multiple sequence information. Single
sequences (designed or native) were input in
both cases. Dark orange indicates overlap.
(F) ProteinMPNN redesign of previous Rosetta-
designed NTF2 fold proteins (3000 backbones
in total) results in considerably improved
AlphaFold single-sequence prediction accuracy.
Dark orange indicates overlap.
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Fig. 3. Structural characterization of ProteinMPNN designs. (A) Comparison
of soluble protein expression over a set of AlphaFold hallucinated monomers
and homo-oligomers (blue) and the same set of backbones with sequences
designed using ProteinMPNN (orange) (N = 129). The total soluble protein
yield after expression in E. coli, obtained from the integrated area under size
exclusion traces of nickel-NTA–purified proteins, increases considerably from the
barely soluble protein of the original sequences after ProteinMPNN rescue
(median yields for 1 liter of culture equivalent are 9 and 247 mg, respectively).
Boxes represent the quartiles of the soluble yield distribution and whiskers
show the rest of it. (B to D) In-depth characterization of a monomer hallucination
and corresponding ProteinMPNN rescue from the set in (A). Like almost all
of the designs in (A), the sequence and structural similarities to the PDB of the
design model are very low [expected value (E-value) = 2.8 against UniRef100
using HHblits; TM-score = 0.56 against PDB]. As shown in (B), the ProteinMPNN-
rescued design has high thermostability, with a virtually unchanged circular
dichroism profile at 95°C compared with 25°C. MRE, mean residue ellipticity.
Shown in (C) is a SEC profile of the failed original design overlaid with the

ProteinMPNN sequence design, which has a clear monodisperse peak at the
expected retention volume. mAU, milli–absorbance units. As shown in (D),
the crystal structure of the ProteinMPNN (PDB ID 8CYK) design is nearly
identical to the design model (2.35-Å RMSD over 130 residues); see fig. S5
for additional information. The right panel shows model side chains in the
electron density; crystal side chains are in green, and AlphaFold side chains are
in blue. (E and F) ProteinMPNN rescue of the Rosetta design made from a
perfectly repeating structural and sequence unit. Residues at corresponding
positions in the repeat unit were tied during ProteinMPNN sequence inference.
Shown in (E) are a backbone design model (orange) and MPNN redesigned
sequence AlphaFold model (blue) with tied residues indicated by lines (~1.2-Å
error over 232 residues). Shown in (F) is a SEC profile of the immobilized-metal
affinity chromatograph (IMAC)–purified original Rosetta design and two
ProteinMPNN redesigns. (G and H) Tying residues during ProteinMPNN
sequence inference both within and between chains to enforce both repeat
protein and cyclic symmetries. Shown in (G) is a side view of the design model. A
set of tied residues are shown in red. Shown in (H) is a top-down view of the
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that the diversity of sequences generated by
ProteinMPNN could be considerably increased,
with only a very small decrease in average se-
quence recovery, by carrying out inference at
higher temperatures (Fig. 2D). We also found
that a measure of sequence quality derived
from ProteinMPNN, the averaged log proba-
bility of the sequence given the structure,
correlated strongly with native sequence re-
covery over a range of temperatures (fig. S3A),
enabling rapid ranking of sequences for se-
lection for experimental characterization.

Experimental evaluation of ProteinMPNN

Although in silico native protein sequence
recovery is a useful benchmark, the ultimate
test of a protein design method is its ability
to generate sequences that fold to the de-
sired structure and have the desired function
when tested experimentally. We evaluated
ProteinMPNN on a representative set of pro-
tein monomer, assembly, and function de-
sign challenges. In each case, we attempted
to rescue previous failed designs with sequen-
ces generated using Rosetta or AlphaFold;
we kept the backbones of the original designs
fixed but discarded the original sequences and
generated new ones using ProteinMPNN. Syn-
thetic genes encoding the designs were ob-
tained, and the proteins were expressed in
Escherichia coli and characterized biochem-
ically and structurally.
We first tested the ability of ProteinMPNN

to design amino acid sequences for protein
backbones generated by deep network hallu-
cination using AlphaFold. Starting from a ran-
dom sequence, a Monte Carlo trajectory is
carried out to optimize the extent to which
AlphaFold predicts the sequence to fold to a
well-defined structure (15). These calculations
generated a wide range of protein sequences
and backbones for both monomers and oligo-
mers that differ considerably from those of
native structures. In initial tests, the sequences
generated by AlphaFold were encoded in syn-
thetic genes, and we attempted to express 150
proteins in E. coli. However, the AlphaFold-
generated sequences were mostly insoluble
(median soluble yield of 9mg per liter of culture
equivalent; Fig. 3A). To determine whether
ProteinMPNN could overcome this problem,
we generated sequences for a subset of these
backbones with ProteinMPNN; residue iden-
tities at symmetry-equivalent positions were
tied by averaging unnormalized probabilities.
The designed sequences were again encoded
in synthetic genes, and the proteins were pro-
duced inE. coli. The success ratewas far higher:

Of the 96 designs that we attempted to ex-
press in E. coli, 73 were expressed solubly
(median soluble yield of 247 mg per liter of
culture equivalent; Fig. 3A) and 50 had the
target monomeric or oligomeric state as as-
sessed by size exclusion chromatography (SEC)
(Fig. 3, A and C). Many of the proteins were
highly thermostable, with secondary structure
being maintained up to 95°C (Fig. 3B).
We solved the x-ray crystal structure of one

of the ProteinMPNN monomer designs with a
fold more complex [template modeling (TM)–
score of 0.56 against PDB] than most de novo–
designed proteins (Fig. 3D). The a-b protein
structure contains five b strands and four a
helices and is close to the design target back-
bone (2.35 Å over 130 residues), demonstrat-
ing that ProteinMPNN can accurately encode
monomer backbone geometry in amino acid
sequences. The accuracy was particularly high
in the central core of the structure, with side
chains predicted using AlphaFold from the
ProteinMPNN sequence fitting nearly perfectly
into the electron density (Fig. 3D). Crystal struc-
tures and cryo-EM structures of 10 cyclic homo-
oligomers with 130 to 1800 amino acids were
also very close to the design target backbones
(15). Thus, ProteinMPNN can robustly and ac-
curately design sequences for both monomers
and cyclic oligomers.
We next took advantage of the flexible de-

coding order of ProteinMPNN to design se-
quences for proteins that contain internal
repeats, tying the identities of proteins in
equivalent positions. We focused on previously
suboptimal Rosetta designs of repeat protein
structures and found that many could be res-
cued by ProteinMPNN redesign; an example is
shown in Fig. 3, E and F.
We next experimented with enforcing both

cyclic and internal repeat symmetry by tying
positions both within and between subunits,
as illustrated in Fig. 3G. We experimentally
characterized a set of such C5 and C6 cyclic
oligomers with backbones generated using
Rosetta and with sequences designed either
with Rosetta or with ProteinMPNN. For the
Rosetta-designed set, only 4 of 10 designs
tested were soluble and none had the cor-
rect oligomeric state confirmed by SEC-
multiangle light scattering (SEC-MALS).
For the ProteinMPNN-designed set, 16 out of
18 were soluble and 5 had the correct oligo-
meric state. We characterized the structure
of one of the designs that was large enough for
resolution of structural features by negative-stain
EM (Fig. 3I), and image averages were closely
consistent with the design model (Fig. 3J).

Wenext evaluated the ability of ProteinMPNN
to design sequences that assemble into target
protein nanoparticle assemblies. We started
with a set of previously described protein back-
bones for two-component tetrahedral designs
that were generated using a compute- and
effort-intensive procedure that involved Rosetta
sequence design followed by more than a
week of manual intervention to decrease sur-
face hydrophobicity and improve interface
packing (16). We used ProteinMPNN to design
76 sequences spanning 27 of these tetrahedral
nanoparticle backbones, tying identities at
equivalent positions in the 12 copies of each
subunit in the assemblies, and tested these
sequences without further intervention. Upon
expression in E. coli and purification by SEC,
13 designs formed assemblies with the ex-
pected molecular weight (~1 MDa) (fig. S4),
including several new tetrahedral assemblies
that had failed using Rosetta. We solved the
crystal structure of one of these and found that
it was very close to the design model [1.2-Å Ca
root mean square deviation (RMSD) over two
subunits; Fig. 3K]. Thus, ProteinMPNN can
robustly design sequences that assemble into
designed nanoparticle structures, which have
proven useful for structure-based vaccine
design (17–19). Sequence generation with
ProteinMPNN is fully automated and requires
only about 1 s per backbone, vastly stream-
lining the design process compared with the
earlier Rosetta-based procedure.
As a final test, we evaluated the ability of

ProteinMPNN to rescue previously failed
designs of newprotein functions usingRosetta.
We chose as a challenging example the design
of proteins that scaffold polyproline II helix
motifs recognized by SH3 domains, where por-
tions of the protein scaffold outside of the core
SH3-bindingmotifmake additional interactions
with the target (the goal is to generate pro-
tein reagents with high affinity and specificity
for individual SH3 family members). Back-
bones that scaffold a proline-rich SH3-binding
motif (PPPRPPK; where P is proline, R is
arginine, and K is lysine) recognized by the
Grb2 SH3 domain were generated using
Rosetta remodel (see legend of Fig. 4; the
SH3-binding motif is colored in green in
Fig. 4A), but sequences designed for these
backbones and expressed in E. coli did not
fold to structures that bind Grb2 (Fig. 4B; the
design problem is challenging because very
few native proteins have proline-rich second-
ary structure elements that closely interact
with the core of the protein). To test whether
ProteinMPNN could overcome this problem,
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design model. (I) Negative-stain electron micrograph of the purified design.
(J) Class average of images from (I) closely match the top-down view in (H).
(K) Rescue of the failed two-component Rosetta tetrahedral nanoparticle design
T33-27 (16) by ProteinMPNN interface design. After ProteinMPNN rescue, the

nanoparticle assembled readily with high yield, and the crystal structure (gray)
is very nearly identical to the design model (green and purple) (backbone
RMSD of 1.2 Å over two complete asymmetric units forming the ProteinMPNN-
rescued interface).
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we generated sequences for the same back-
bones while keeping the core SH3-binding
motif sequence (PPPRPPK) fixed and expressed
the proteins in E. coli. Biolayer interferometry
experiments showed strong binding to the
Grb2 SH3 domain (Fig. 4B), with considerably
higher signal than the free proline-rich pep-
tide; point mutations predicted to disrupt the
design completely eliminated thebinding signal.
Thus, ProteinMPNN can generate sequences
for challenging protein design problems even
when traditional Rosetta design fails.

Conclusion

ProteinMPNN solves sequence design prob-
lems in a fraction of the time required for

physically based approaches such as Rosetta,
which carry out large-scale side chain packing
calculations; achieves much higher protein se-
quence recovery on native backbones (52.4
versus 32.9%); and rescues previously failed
designs made using Rosetta or AlphaFold for
protein monomers, assemblies, and protein-
protein interfaces.Machine-learning sequence
design approaches have been developed pre-
viously (1–7), including the message-passing
method on which ProteinMPNN is based, but
have focused on the monomer design prob-
lem, have achieved lower native sequence
recoveries, and, with the exception of a triose-
phosphate isomerase (TIM) barrel design study
(6), have not been extensively validated using

crystallography and cryo-EM. Whereas struc-
ture prediction methods can be evaluated
purely in silico, this is not the case for pro-
tein design methods: In silico metrics such
as native sequence recovery are very sensitive
to crystallographic resolution (fig. S3, B and C)
and may not correlate with proper folding
(even a single residue substitution, while caus-
ing little change in overall sequence recovery,
can block folding); in the same way that
language translation accuracy must ultimately
be evaluated by human users, the ultimate
test of sequence designmethods is experimen-
tal characterization.
Unlike Rosetta and other physically based

methods, ProteinMPNN requires no expert
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Fig. 4. Design of protein function with ProteinMPNN. (A) Design scheme.
The first panel shows the structure (PDB ID 2W0Z) of a fragment of Gab2 peptide
bound to the human Grb2 C-term SH3 domain (core SH3-binding motif PPPRPPK
is in green; the target is rendered with surface and colored blue). In the second
panel, helical bundle scaffolds were docked to the exposed face of the peptide using
RIFDOCK (20), and Rosetta remodel was used to build loops connecting the
peptide to the scaffolds. Rosetta sequence design with layer design task operations
was used to optimize the sequence of the fusion (cyan) for stability, rigidity of
the peptide-helical bundle interface, and binding affinity for the Grb2 SH3 domain.
The third panel shows the ProteinMPNN redesign (orange) of the designed binder
sequence; hydrogen bonds involving asparagine side chains between the peptide and

base scaffold are shown in green and in the inset. In the fourth panel, mutation of
the two asparagines (N) to aspartates (D) disrupts the scaffolding of the target
peptide. (B) Experimental characterization of binding using biolayer interferometry.
Biotinylated C-terminal SH3 domain from human Grb2 was loaded onto Streptavidin
(SA) Biosensors, which were then immersed in solutions containing varying
concentrations of SH3-binding peptide AIAPPPRPPKPSQ (first panel; A, alanine; I,
isoleucine; S, serine; Q, glutamine) or of the designs (second to fourth panels)
and then transferred to buffer lacking added protein for dissociation measurements.
The ProteinMPNN design (third panel) has much greater binding signal than the
original Rosetta design (second panel); this is greatly reduced by the asparagine-to-
aspartate mutations (fourth panel).
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customization for specific design challenges,
and it should thus make protein design more
broadly accessible. This robustness reflects
fundamental differences in how the sequence
design problem is framed. In traditional phys-
ically based approaches, sequence design maps
to the problem of identifying an amino acid se-
quencewhose lowest-energy state is the desired
structure. This is, however, computationally
intractable because it requires computing en-
ergies over all possible structures, including
unwanted oligomeric and aggregated states; in-
stead, as a proxy, Rosetta and other approaches
carry out a search for the lowest-energy se-
quence for a given backbone structure, and
structure prediction calculations are required
in a second step to confirm that there are no
other structures in which the sequence has
still lower energy. Because of the lack of con-
cordance between the design objective and
what is being explicitly optimized, considera-
ble customization can be required to generate
sequences that fold; for example, in Rosetta
design calculations, hydrophobic amino acids
are often restricted on the protein surface be-
cause they can stabilize undesired multimeric
states and, at the boundary region between
the protein surface and core, there can be
considerable ambiguity about the extent to
which such restrictions should be applied.
Although deep-learningmethods lack the phys-
ical transparency of methods like Rosetta, they
are trained directly to find the most probable
amino acid for a protein backbone given all
the examples in the PDB, and hence such am-
biguities do not arise, making sequence de-
sign more robust and less dependent on the
judgment of a human expert.
The high rate of experimental design suc-

cess of ProteinMPNN, together with the com-
pute efficiency, applicability to almost any
protein sequence design problem, and lack
of requirement for customization, should
make it very broadly useful for protein de-
sign. ProteinMPNN-generated sequences also
have a much higher propensity to crystallize,
greatly facilitating structure determination

of designed proteins (15). The observation
that ProteinMPNN-generated sequences are
predicted to fold to native protein backbones
more confidently and accurately than the orig-
inal native sequences (using single-sequence
information in both cases) suggests that
ProteinMPNN may also be widely useful in
improving expression and stability of recom-
binantly expressed native proteins (with resi-
dues required for function kept fixed).
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Robust deep learning–based protein sequence design using ProteinMPNN
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Deep learning takes on protein design
Deep learning approaches such as Alphafold and Rosettafold have made reliable protein structure prediction broadly
accessible. For the inverse problem, finding a sequence that folds to a desired structure, most approaches remain
based on energy optimization. In two papers, a range of protein design problems were addressed through deep
learning methods. Dauparas et al. built on recent deep learning protein design approaches to develop a method
called ProteinMPNN. They validated designs experimentally and showed that ProteinMPNN can rescue previously
failed designs made using Rosetta or Alphafold. Wicky et al. started from a random sequence and used Monte
Carlo sequence search coupled with structure prediction by Alphafold to design cyclic homo-oligomers. Although the
designs were generated to achieve stable expression, the sequences had to be regenerated using ProteinMPNN. This
approach allowed for the design of a range of experimentally validated cyclic oligomers and paves the way for the
design of increasingly complex assemblies. —VV
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